
D3.2 – Test Suites Report Page 1 of 20

MobiWebApp

Mobile Web Applications for Future Internet Services

Deliverable D3.2

Test Suites Report Year 2

Version: 18th September Final

D3.2 – Test Suites Report Page 2 of 20

PROJECT PERIODIC REPORT
Name, title and organisation of the scientific repr esentative of the project's coordinator 1:
Dr Philipp Hoschka Tel: +33-4-92385077 Fax: +33-4-9 2385011 E-mail: ph@w3.org

Project website 2 address: http://mobiwebapp.eu/

Project

Grant Agreement number 257800

Project acronym: MobiWebApp

Project title: Mobile Web Applications

for Future Internet Services

Funding Scheme: Coordination & Support Action

Date of latest version of Annex I against which the
assessment will be made:

March 17, 2010

Document

Period covered: 1 September 2011 to 31 August 2012

Deliverable number: D3.2

Deliverable title Test Suites Report Year 2

Contractual Date of Delivery: Project month M24

Actual Date of Delivery: September 2012

Editor (s): Robin Berjon

Author (s): Robin Berjon

Reviewer (s): Dominique Hazael-Massieux

Participant(s): ERCIM/W3C

Work package no.: 3

Work package title: Interoperability

Work package leader: Robin Berjon

Distribution: PU

Version/Revision: 1.1

Draft/Final: Final

Total number of pages (including cover): 20

1 Usually the contact person of the coordinator as specified in Art. 8.1. of the grant agreement
2 The home page of the website should contain the generic European flag and the FP7 logo which are available in
electronic format at the Europa website (logo of the European flag:
http://europa.eu/abc/symbols/emblem/index_en.htm ; logo of the 7th
FP: http://ec.europa.eu/research/fp7/index_en.cfm?pg=logos). The area of activity of the project should also
be mentioned.

MobiWebApp - 257800

D3.2 - Test Suites Report Page 3 of 20

DISCLAIMER

This document contains description of the MobiWebApp project work and findings.

The authors of this document have taken any available measure in order for its content to be
accurate, consistent and lawful. However, neither the project consortium as a whole nor the
individual partners that implicitly or explicitly participated in the creation and publication of this
document hold any responsibility for actions that might occur as a result of using its content.

This publication has been produced with the assistance of the European Union. The content of
this publication is the sole responsibility of the MobiWebApp consortium and can in no way be
taken to reflect the views of the European Union.

The European Union is established in accordance with
the Treaty on European Union (Maastricht). There are
currently 27 Member States of the Union. It is based
on the European Communities and the member states
cooperation in the fields of Common Foreign and
Security Policy and Justice and Home Affairs. The five
main institutions of the European Union are the
European Parliament, the Council of Ministers, the
European Commission, the Court of Justice and the
Court of Auditors. (http://europa.eu.int/)

MobiWebApp is a project funded in part by the Europ ean Union.

MobiWebApp - 257800

D3.2 - Test Suites Report Page 4 of 20

TABLE OF CONTENTS

Disclaimer 3

Table of Contents 4

1- Summary 5

2- Introduction 6

3- Testing Framework 8

4- Testing Activity At W3C 15

MobiWebApp - 257800

D3.2 - Test Suites Report Page 5 of 20

1- SUMMARY
This report provides an overview of the achievements of the Interoperability Work
Package during the second year of MobiWebApp.

MobiWebApp built atop the work carried out in the first year to continue establishing the
constitutive element of a generic testing activity within W3C, targeting mobile
interoperability as a primary goal. This activity encompasses groups working specifically
on testing technology and is coordinated with the many W3C groups that develop tests as
part of their own deliverables.

Over this period, MobiWebApp has developed and deployed a complete testing
framework using state-of-the-art mobile-friendly Web technology that enables the
management of test suites across the entire W3C organisation in coordination with the
broader community and industry, and has contributed to the development of test suites as
well as to their integration into the framework through continuous education and
outreach. This report delves into both aspects.

MobiWebApp - 257800

D3.2 - Test Suites Report Page 6 of 20

2- INTRODUCTION
Web technologies are increasingly being used to develop full-fledged applications,
notably on mobile devices where they are commonly perceived as the upcoming primary
application development technology. The scope and variety of these technologies keep
expanding, adding new features to HTML, to CSS, and a host of new APIs specifically
tailored to the creation of applications.

Such an expansion, spread across a broad community spanning multiple working groups,
and being deployed by a multiplicity of browser vendors, device manufacturers, and Web
application developers naturally creates a number of interoperability issues. While W3C
working groups are required to produce test material as part of their deliverables, these
efforts have long happened primarily independently from one another, without reuse of
testing components, with insufficient common infrastructure, and often with varying
degrees of quality. Results obtained from these diverse testing efforts were difficult to
find and to combine together in order to gain visibility on the broader interoperability of
the platform and therefore on the overall usability of the technologies that compose it.

The W3C thus made the decision to launch a generic testing activity that would be able to
produce common infrastructure for the complete testing ecosystem involved in standards
development and the usage of standards technologies by Web developers.

MobiWebApp’s Interoperability Work Package funds work to create a common test
framework within W3C along with its documentation, and work on integrating the test
suites that working groups produce into this shared infrastructure.

The Testing Activity at W3C includes the Web Testing Interest Group3 which is in
charge of developing and deploying testing infrastructure and their paraphernalia. It is in
collaboration with this group that the work described here has been carried out.

3 http://www.w3.org/testing/ig/

MobiWebApp - 257800

D3.2 - Test Suites Report Page 7 of 20

8 http://www.w3.org/wiki/Testing/Requirements

MobiWebApp - 257800

D3.2 - Test Suites Report Page 8 of 20

3- TESTING FRAMEWORK
During the first year of this project, the MobiWebApp project contributed to the creation
in W3C of the basic building blocks of a testing framework. This included deploying a
specific test server and putting together the initial version of the testing framework,
which is the core component in this project and what the MobiWebApp team kept
building atop of. In order to develop this, an initial set of over 70 requirements8 was
gathered.

Of those requirements, all save one have now been implemented in the online Test
Framework10. (The one missing requirement is currently under scrutiny and is likely to be
dropped due to actual lack of interest for it.)

Figure 1: W3C Test Framework listing test results

10 http://w3c-test.org/framework/app/

MobiWebApp - 257800

D3.2 - Test Suites Report Page 9 of 20

Figure 2: Specifications tested in the W3C Test Framework
The Test Framework is now fully operational, and is increasingly being used by the Web
testing communities. The initial stab at this framework which was carried out during the
first year constituted a good starting point, but as a more traditional server-side Web
application, it suffered from a number of limitations that did not put it on par with
expectations for Web applications developed today. Over the past year, MobiWebApp
therefore largely re-architected it in order to build a more flexible, more powerful system
that is both more open to future development and easier to manipulate for its end-users.

A number of new features have been added. Of particular note, data from WURFL has
been integrated into the framework so as to improve its ability to produce more useful
analysis as part of its reporting features. WURFL is a database that makes it possible to
identify browsers and devices based on the headers they set in the HTTP protocol.

Prior to WURFL integration, reports could be generated for specific browsers or
rendering engines, but such information did not provide the ability to differentiate for
instance mobile platforms from desktop ones (especially since in most cases the same
browsers or rendering engines are now available on both). With the integration of
WURLF, it is now possible to query test results gathered by the system to know if they
were on a mobile device, a tablet, or a TV for instance. This enables more powerful data
mining by making it possible to categorise test results to take the specifics of a multi-
device world into account.

This contributes to another new feature: the production of report-generating tools as part
of the Framework. It is difficult to anticipate what different users may want as part of a
report generated by the Framework and therefore to produce all the potentially useful
reports.

MobiWebApp - 257800

D3.2 - Test Suites Report Page 10 of 20

As detailed below, the Framework now exposes a REST API that is very useful to ensure
that third-party developers can both reuse our open data and contribute to it. But it is not
realistic to expect everyone who might need such data to be able to write a program to
process it and generate a report tailored to specific needs.

In order to address this, the framework now offers a “Reports” section. One of these
reports is in fact a report-making tool. The user is invited to choose which target
platforms she wants a report for (e.g. a specific browser, or browsers on a specific device
class such as “all TVs”) and the specifications for which results are desired. Once the
report type is specified, the system generates a matrix of support based on test results that
fills out the report.

Additionally, the framework can now produce a report on itself, such as how many test
suites, test cases, results, and so forth are available. Since the data is continuously
available, no human intervention is required in order to keep such reports up to date.

Mobile Friendly Framework
One of the objectives for this second year was to build a mobile-friendly test runner and
improve overall navigation in the Test Framework, as well as improve the Test
Framework’s user interface overall to make it more fluid to use.

It was already possible to use the Test Framework Web application on mobile devices,
but the experience was at best suboptimal. This has now been strongly improved.

First, the code has been reorganised in order to be more easily optimised, which has
enabled us to trim down the weight of resources that are being transmitted over the
network – an important consideration for mobile devices.

Overall the client-side code has been written to take today’s Web development best
practices into account, which translates to a highly maintainable Web application that
adapts well to new constraints and requirements.

Second, the way in which the interface is presented has been completely overhauled to be
responsive to device size. Notably, when on a smaller screen the navigation switches
from horizontal to vertical, the tables that make it possible to select a suite or
specification to test fold down into simpler boxes, and the test running user interface
reorganises itself to be more usable within the allotted space (see Figure 3).

Only the results tables remain large on a small screen, as there does not seem to be a
better way of presenting a large data set of results, and that most users interested in these
data would in any case be more likely to use a wide screen to browse through it

Thanks to this the Test Framework is now perfectly usable on a mobile device, which is
a key aspect in obtaining test results for small-screen devices.

Beyond the mobile improvements, the new user interface has also been largely improved
in many places. It is now more fluid and easier to navigate where the first version often
confounded users. It also provides more details about the underlying data that the system
gathers.

Switching between pages is now much faster as only the requisite data is loaded, while
ease of navigation is maintained. This was achieved by reusing modern Web
development techniques and libraries. The feedback from end-users received after these
changes has been overwhelmingly positive.

MobiWebApp - 257800

D3.2 - Test Suites Report Page 11 of 20

Finally, the initial iteration on the Test Framework only made it possible to run tests
inside of an <object> element, which worked well for desktop browsers but caused a
variety of issues with mobile ones. This has been changed so that embedded tests can
now run either using the <object> element or the <iframe> element. This small
preference can make a large difference in the behaviour of embedding on some
implementations, and therefore helps with the test running experience. The preference has
been made sticky for a given user agent on a given device, and can therefore persist
across multiple test runs and test suites which makes the experience of users running
tests much more fluid.

Figure 3: Screenshot of the test runner on a smaller screen

MobiWebApp - 257800

D3.2 - Test Suites Report Page 12 of 20

Automated Test Results Collection
By default, the test runner present tests to the tester in simple alphabetical order — which
is fine, but not always the most helpful.

In order to address this, the MobiWebApp project added to the system a way of running
tests in “most-needed” order. Using this, the framework will find out which tests need
more runs for the specific user-agent that the current user is running and place those at
the beginning of the list.

MobiWebApp has also worked on adding two other smarter test running modes. The
first is the ability to run tests in a random order. Indeed, in some cases running a test may
cause the user agent to enter a state that has a side-effect on another, subsequent test. Due
to this, always running tests in the same order can hide problems that should ideally be
surfaced. Adding a random order addresses this issue.

The other smarter ordering is the ability to run automated tests first. This makes it
Ivention, and therefore gather more information faster.

While developing this functionality it appeared that some of the metadata, notably the
parts that can help ascertain that a test can run in an automated fashion, were of unequal
quality. In order to address that, we reviewed and improved metadata throughout the
system.

Having now shown the usefulness of that metadata, we now expect that test contributors
will pay more attention to it and provide higher quality metadata in the long run.

Documentation for the Framework
While MobiWebApp made efforts to ensure that using the framework is as intuitive as
possible, some parts naturally require documentation. The MobiWebApp project
therefore provided documentation that describes the manifest format that the framework
uses so that it can more easily be manipulated outside of the Manifest Generator tool11.

Another important component is the metadata format as used inside test files themselves.
This part of the metadata system makes it possible to maintain metadata as close as
possible to the tests that are being described — which is to say in the tests themselves.
The MobiWebApp project also wrote and published documentation for that part of the
format12.

This documentation covers multiple aspects. First, it covers the format itself, what it
means, and provides a convenient template for whoever wishes to start writing a test from
scratch. Second, it provides the pointers to the Test Harness documentation (of which
more is said below). Finally, it documents the Manifest Generator tool that can take a test
suite, extract all the metadata contained in its tests, and generate a manifest tailored to the
needs of the Test Framework so that tests can be more easily imported, with the correct
information.

Several users have taken to using the framework since we have documented it, and the
feedback so far is that they have found it very helpful in getting up and running quickly
with the system.

11 http://w3c-test.org/framework/docs/maintainer/
12 http://w3c-test.org/framework/docs/maintainer/metadata-format.html

MobiWebApp - 257800

D3.2 - Test Suites Report Page 13 of 20

REST API and Third-Party Integration
Interactions with the test framework were initially only available through a human-
oriented user interface.

Over the past year, MobiWebApp also developed a REST API to the same
functionalities that enables programmatic access (both for reading and writing) to the
system, essentially enabling it as an Open Data platform.

This enables third parties to re-use creatively the data collected by the system: anyone in
the Web community can make use of this information and interact with it without prior
permission. This makes it possible for such third parties to mine the same information
and enrich it with new views and new services.

Many creative uses of this data are now entirely open, from building existing services
such as Can I Use13 atop real-world, continuously gathered information to novel
exploitations of this data that we haven’t envisaged yet. The flexibility of the API is there
precisely so that anyone can put it to work for purposes never imagined by the
MobiWebApp team.

Producing specialised views on test results is useful for W3C working groups as well.
Amongst other things, it makes it possible for them to more easily evaluate how well a
specification is being implemented by vendors, which sections are proving most
complicated, and in turn improve their specifications to address such problems.

It can also be used by developers to produce a technological baseline so that they can
know when to use some technologies and when they are not yet sufficiently well
deployed. A company wishing to develop a Web application known to require a specific
set of features could build a view of the results for these features that would enable them
to evaluate its support in deployed systems, and to adjust their product to reach a broader
audience.

The API caters to many needs by having at its core a simple, REST-friendly set of actions
that produce well-documented JSON data. It is accessible to any Web applications
(notably via the usage of CORS and JSON-P).

In order to ensure that the API was sufficiently functional for advanced uses, the entire
Test Framework user interface itself, including complete reports and test runner, are built
on top of this API.

MobiWebApp also assisted the first deployment of the framework’s REST API to a third
party. The W3C Internationalization Working Group is very keen on testing and on
publishing their test results to their own site, with explanations and details about what
exactly they are testing. To date they had been carrying out this process manually, a task
that required a fair amount of tedious work and that had proven error prone over the
years.

By using the documentation and some code examples and with continuous oversight and
assistance from the project they were able to automate this functionality and integrate

13 http://caniuse.com/

MobiWebApp - 257800

D3.2 - Test Suites Report Page 14 of 20

data directly from the framework straight into their report pages, notably for Ruby
Markup14 and HTML Escapes15.

Figure 4: Integration of Test Framework results in the W3C Internationalization
Working Group pages
Working closely with the Internationalization Working Group helped MobiWebApp
identify which parts of the REST API worked, and which parts were problematic.
Notably, we identified and fixed two primary issues:

• The documentation was insufficiently clear in a number of places about which
type of information a client script could expect to receive. This was addressed
with extensive clarification of the documentation, based on the explanations that
were given to the Internationalization Working Group.

• In some cases, the part of the API that provided test results could generate very
large amounts of data with extremely precise granularity. While there are cases in
which such granularity can indeed be useful, for many situations (such as the
Internationalization group’s case) the volume of results to be transferred was
excessive while at the same time causing the rendering of the results to be slow —
possibly even unusable over a mobile connection. This was addressed by adding a
more summarised API method that provides the same data but with far less
granularity and with a number of statistical aspects pre-calculated.

Once the changes were deployed and the Internationalization Working Group was able to
release its live pages using MobiWebApp’s REST API, they indicated that they were
very happy with the result and plan on using it more. We anticipate to progressively see
the appearance of an increasing number of such uses — notably, we expect the API to
increasingly be used for the production of implementation reports, a critical step in
W3C standardization process.

We also envision its usage directly inside draft to flag some sections as more or less
stable based on the test results being gathered.

14 http://www.w3.org/International/tests/html-css/ruby/results-interactive
15 http://www.w3.org/International/tests/html-css/escapes/results-html-escapes

MobiWebApp - 257800

D3.2 - Test Suites Report Page 15 of 20

4- TESTING ACTIVITY AT W3C
In the first year, the MobiWebApp project created the formal environment in which the
work done in the second year evolved. This comprised multiple components. First,
requirements were gathered from the W3C community at large in order to ensure that the
different needs of all groups developing different technologies were taken into account.
Then, these requirements were prioritised in order to produce the development roadmap
that was deployed in the second year.

In parallel to that, the collaboration spaces in which this work took place — namely the
Web Testing Interest Group and the Browser Testing and Tools Working Group were
chartered and outreach was conducted in order to drive participation in them. Having
successfully lifted them off the ground, this provided a high quality setting for the
continuation of this work to take place in.

Collaboration with Core Mobile Web Platform Communi ty Group
A Community Group is a specific type of group within W3C that is more open than
regular groups in order to foster greater involvement from a wider community.

The Core Mobile Web Platform Community Group (CoreMob CG)16 is one such group
that aims to accelerate the adoption of the Mobile Web as a compelling platform for the
development of modern mobile web applications. In order to do so, it has gathered
together over 250 people from Web development, network operators, large Web
companies, handset manufacturers and browser vendors. Its focus on interoperability
through testing makes it a natural partner for this project.

Facebook, one of the instigator of the group, submitted their RingMark test suite17, a
visualization of gaps in standards support, to the CoreMob CG. In order to avoid
fragmentation in the W3C’s testing toolset, we discussed the architecture of the system
with the CG in order to reach consensus on a way in which the RingMark visual
component could be used to represent results gathered by the W3C Test Framework so
that the adherence to standards of various devices and browsers could be easily
represented, and conversely to have the RingMark test runner submit new result batches
to the Test Framework.

While at this point only the architecture for this integration has been sketched out,
development continues in the CoreMob CG to further this idea. We expect this
collaboration to continue after the end of the in order to bring this collaboration to full
fruition.

Interaction with this CG also made it possible to test drive the functionalities of the
framework with highly motivated users from the industry and broader community, which
in turn made it possible to make multiple improvements and extensive documentation of
the W3C’s system.

16 http://www.w3.org/community/coremob/
17 http://rng.io/

MobiWebApp - 257800

D3.2 - Test Suites Report Page 16 of 20

Harness Documentation
One aspect in which our collaboration with CoreMob revealed a weakness was in the
documentation of the JavaScript test harness.

The Test Harness18 is a JavaScript library that W3C test suites use in order to run tests in
a specific, well-controlled manner, and to produce well-defined reports on a given test
run.

It is designed to work well with the overall Test Framework, and to support many
advanced features that put it on par with modern testing systems. Thanks to continuous
outreach, it is now the standard test system used across W3C groups that produce APIs,
such as HTML, WebApps, Device API, etc.

Despite being in common use, it was not well documented beyond comments in the
source JavaScript. This provided a barrier to new contributors and did not help existing
one produce tests with as high quality as they ought to have. In fact, only a core set of
high-quality developers were successful in deploying it properly, while too many
remained puzzled as to how to use it or created test suites that features bugs due to poor
understanding of the harness. This issue has now been fixed with a complete tutorial that
covers the entire functionality of the harness system19.

The tutorial is divided into two columns — one with the functionality, and the other with
the code that it corresponds to — in order to be easier to read. Furthermore, all of the
code displayed in the tutorial is actually run as part of the tutorial, so that the results as
reported by a real test suite can be observed at the end of the tutorial. This is a pattern that
is common in tutorials found in the JavaScript community, and was therefore selected as
a way of maximising outreach to that specific community.

18 https://github.com/jgraham/testharness.js
19 http://darobin.github.com/test-harness-tutorial/docs/using-testharness.html

MobiWebApp - 257800

D3.2 - Test Suites Report Page 17 of 20

Figure 5: Screenshot of the Test Harness tutorial with running code
The community has provided extensive feedback on this tutorial, which has been
incorporated. The Test Harness project now uses MobiWebApp’s tutorial as its official
primary documentation. Feedback on this tutorial from the test developers involved in the
Core Mobile Web Platform Community Group has been very positive, and is helping
them develop more tests.

Integrating Existing Test Suites
MobiWebApp has also been contributing to the development of test suites, notably by
ensuring that they are integrated into the framework, and in providing the tooling related
to the task.

While the test framework was first deployed in late 2011, it now features 3122 test cases
in 40 test suites for 37 specifications. Put together they have generated 19,923 test results.

The increase in test suites on a monthly basis can be seen in the framework’s own
reporting system:

MobiWebApp - 257800

D3.2 - Test Suites Report Page 18 of 20

Figure 6: Evolution of the number of test cases in W3C Test Framework
These test suites are naturally generating an increasing volume of test results, which is
progressively helping to paint a detailed picture of how well Web standards are
implemented and deployed.

Result submissions can also be seen to increase on a monthly basis from the framework’s
reporting:

Figure 7: Evolution of number of test results gathered by the W3C Test Framework
Initially, integrating test suites into the framework was somewhat tedious. The reason for
that was that one needed to produce a manifest listing all the tests in a test suite, along
with metadata describing them, before the test suite could be imported.

MobiWebApp - 257800

D3.2 - Test Suites Report Page 19 of 20

However, since test documents contain the required metadata in a machine-readable
form, MobiWebApp wrote a small tool called the Manifest Generator that is able to
spider an existing test suite, extract the metadata, and generate a manifest that works for
the test framework. This has proved very helpful in speeding up the integration of test
suites, and most suites are now imported using this tool.

D5.2 - Annual Report (M14) Page 20 of 20

Conclusion
The availability of a strong and full-featured testing ecosystem continues to show its
increasing relevance. The production of a generic testing framework and its paraphernalia
has helped simplify the production of higher quality test material from Working Groups.
While the test framework will continue to evolve, it has now reaches a level of capability
and stability that has enabled it to prove itself useful in real-world usage contexts, outside
of the community that holds testing as its primary focus.

During its second year, MobiWebApp grew the framework and its surrounding material:

• By expanding the functionality of the framework.

• By making the data available and reusable in machine-readable form.

• By ensuring that the user interface functions properly on constrained devices.

• By documenting all the important components of the framework and collaborating
with various groups to ensure that they were able to use our tools.

• By helping with test development and by integrating existing test suites into the
system.

