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DISCLAIMER  
 

This document contains description of the MobiWebApp project work and findings. 

The authors of this document have taken any available measure in order for its content to be 
accurate, consistent and lawful. However, neither the project consortium as a whole nor the 
individual partners that implicitly or explicitly participated in the creation and publication of this 
document hold any responsibility for actions that might occur as a result of using its content. 

This publication has been produced with the assistance of the European Union. The content of 
this publication is the sole responsibility of the MobiWebApp consortium and can in no way be 
taken to reflect the views of the European Union. 

 

The European Union is established in accordance with 
the Treaty on European Union (Maastricht). There are 
currently 27 Member States of the Union. It is based 
on the European Communities and the member states 
cooperation in the fields of Common Foreign and 
Security Policy and Justice and Home Affairs. The five 
main institutions of the European Union are the 
European Parliament, the Council of Ministers, the 
European Commission, the Court of Justice and the 
Court of Auditors. (http://europa.eu.int/)  

 
MobiWebApp is a project funded in part by the Europ ean Union. 
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1- SUMMARY 
This report provides an overview of the achievements of the Interoperability Work 
Package during the second year of MobiWebApp. 

MobiWebApp built atop the work carried out in the first year to continue establishing the 
constitutive element of a generic testing activity within W3C, targeting mobile 
interoperability as a primary goal. This activity encompasses groups working specifically 
on testing technology and is coordinated with the many W3C groups that develop tests as 
part of their own deliverables. 

Over this period, MobiWebApp has developed and deployed a complete testing 
framework using state-of-the-art mobile-friendly Web technology that enables the 
management of test suites across the entire W3C organisation in coordination with the 
broader community and industry, and has contributed to the development of test suites as 
well as to their integration into the framework through continuous education and 
outreach. This report delves into both aspects. 
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2- INTRODUCTION 
Web technologies are increasingly being used to develop full-fledged applications, 
notably on mobile devices where they are commonly perceived as the upcoming primary 
application development technology. The scope and variety of these technologies keep 
expanding, adding new features to HTML, to CSS, and a host of new APIs specifically 
tailored to the creation of applications. 

Such an expansion, spread across a broad community spanning multiple working groups, 
and being deployed by a multiplicity of browser vendors, device manufacturers, and Web 
application developers naturally creates a number of interoperability issues. While W3C 
working groups are required to produce test material as part of their deliverables, these 
efforts have long happened primarily independently from one another, without reuse of 
testing components, with insufficient common infrastructure, and often with varying 
degrees of quality. Results obtained from these diverse testing efforts were difficult to 
find and to combine together in order to gain visibility on the broader interoperability of 
the platform and therefore on the overall usability of the technologies that compose it. 

The W3C thus made the decision to launch a generic testing activity that would be able to 
produce common infrastructure for the complete testing ecosystem involved in standards 
development and the usage of standards technologies by Web developers. 

MobiWebApp’s Interoperability Work Package funds work to create a common test 
framework within W3C along with its documentation, and work on integrating the test 
suites that working groups produce into this shared infrastructure. 

The Testing Activity at W3C includes the Web Testing Interest Group3 which is in 
charge of developing and deploying testing infrastructure and their paraphernalia. It is in 
collaboration with this group that the work described here has been carried out. 

 

                                                 
3 http://www.w3.org/testing/ig/ 
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8 http://www.w3.org/wiki/Testing/Requirements 
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3- TESTING FRAMEWORK  
During the first year of this project, the MobiWebApp project contributed to the creation 
in W3C of the basic building blocks of a testing framework. This included deploying a 
specific test server and putting together the initial version of the testing framework, 
which is the core component in this project and what the MobiWebApp team kept 
building atop of. In order to develop this, an initial set of over 70 requirements8 was 
gathered. 

Of those requirements, all save one have now been implemented in the online Test 
Framework10. (The one missing requirement is currently under scrutiny and is likely to be 
dropped due to actual lack of interest for it.) 

 
Figure 1: W3C Test Framework listing test results 

                                                 
10 http://w3c-test.org/framework/app/ 
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Figure 2: Specifications tested in the W3C Test Framework 
The Test Framework is now fully operational, and is increasingly being used by the Web 
testing communities. The initial stab at this framework which was carried out during the 
first year constituted a good starting point, but as a more traditional server-side Web 
application, it suffered from a number of limitations that did not put it on par with 
expectations for Web applications developed today. Over the past year, MobiWebApp 
therefore largely re-architected it in order to build a more flexible, more powerful system 
that is both more open to future development and easier to manipulate for its end-users. 

A number of new features have been added. Of particular note, data from WURFL has 
been integrated into the framework so as to improve its ability to produce more useful 
analysis as part of its reporting features. WURFL is a database that makes it possible to 
identify browsers and devices based on the headers they set in the HTTP protocol. 

Prior to WURFL integration, reports could be generated for specific browsers or 
rendering engines, but such information did not provide the ability to differentiate for 
instance mobile platforms from desktop ones (especially since in most cases the same 
browsers or rendering engines are now available on both). With the integration of 
WURLF, it is now possible to query test results gathered by the system to know if they 
were on a mobile device, a tablet, or a TV for instance. This enables more powerful data 
mining by making it possible to categorise test results to take the specifics of a multi-
device world into account. 

This contributes to another new feature: the production of report-generating tools as part 
of the Framework. It is difficult to anticipate what different users may want as part of a 
report generated by the Framework and therefore to produce all the potentially useful 
reports.  



MobiWebApp - 257800 

D3.2 - Test Suites Report  Page 10 of 20 

  

 

As detailed below, the Framework now exposes a REST API that is very useful to ensure 
that third-party developers can both reuse our open data and contribute to it. But it is not 
realistic to expect everyone who might need such data to be able to write a program to 
process it and generate a report tailored to specific needs. 

In order to address this, the framework now offers a “Reports” section. One of these 
reports is in fact a report-making tool. The user is invited to choose which target 
platforms she wants a report for (e.g. a specific browser, or browsers on a specific device 
class such as “all TVs”) and the specifications for which results are desired. Once the 
report type is specified, the system generates a matrix of support based on test results that 
fills out the report. 

Additionally, the framework can now produce a report on itself, such as how many test 
suites, test cases, results, and so forth are available. Since the data is continuously 
available, no human intervention is required in order to keep such reports up to date. 

Mobile Friendly Framework  
One of the objectives for this second year was to build a mobile-friendly test runner and 
improve overall navigation in the Test Framework, as well as improve the Test 
Framework’s user interface overall to make it more fluid to use. 

It was already possible to use the Test Framework Web application on mobile devices, 
but the experience was at best suboptimal. This has now been strongly improved. 

First, the code has been reorganised in order to be more easily optimised, which has 
enabled us to trim down the weight of resources that are being transmitted over the 
network – an important consideration for mobile devices. 

Overall the client-side code has been written to take today’s Web development best 
practices into account, which translates to a highly maintainable Web application that 
adapts well to new constraints and requirements. 

Second, the way in which the interface is presented has been completely overhauled to be 
responsive to device size. Notably, when on a smaller screen the navigation switches 
from horizontal to vertical, the tables that make it possible to select a suite or 
specification to test fold down into simpler boxes, and the test running user interface 
reorganises itself to be more usable within the allotted space (see Figure 3).  

Only the results tables remain large on a small screen, as there does not seem to be a 
better way of presenting a large data set of results, and that most users interested in these 
data would in any case be more likely to use a wide screen to browse through it  

Thanks to this the Test Framework is now perfectly usable on a mobile device, which is 
a key aspect in obtaining test results for small-screen devices. 

Beyond the mobile improvements, the new user interface has also been largely improved 
in many places. It is now more fluid and easier to navigate where the first version often 
confounded users. It also provides more details about the underlying data that the system 
gathers. 

Switching between pages is now much faster as only the requisite data is loaded, while 
ease of navigation is maintained. This was achieved by reusing modern Web 
development techniques and libraries. The feedback from end-users received after these 
changes has been overwhelmingly positive. 
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Finally, the initial iteration on the Test Framework only made it possible to run tests 
inside of an <object> element, which worked well for desktop browsers but caused a 
variety of issues with mobile ones. This has been changed so that embedded tests can 
now run either using the <object> element or the <iframe> element. This small 
preference can make a large difference in the behaviour of embedding on some 
implementations, and therefore helps with the test running experience. The preference has 
been made sticky for a given user agent on a given device, and can therefore persist 
across multiple test runs and test suites which makes the experience of users running 
tests much more fluid. 

 
Figure 3: Screenshot of the test runner on a smaller screen 
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Automated Test Results Collection  
By default, the test runner present tests to the tester in simple alphabetical order — which 
is fine, but not always the most helpful. 

In order to address this, the MobiWebApp project added to the system a way of running 
tests in “most-needed” order. Using this, the framework will find out which tests need 
more runs for the specific user-agent that the current user is running and place those at 
the beginning of the list. 

MobiWebApp has also worked on adding two other smarter test running modes. The 
first is the ability to run tests in a random order. Indeed, in some cases running a test may 
cause the user agent to enter a state that has a side-effect on another, subsequent test. Due 
to this, always running tests in the same order can hide problems that should ideally be 
surfaced. Adding a random order addresses this issue. 

The other smarter ordering is the ability to run automated tests first. This makes it 
Ivention, and therefore gather more information faster.  

While developing this functionality it appeared that some of the metadata, notably the 
parts that can help ascertain that a test can run in an automated fashion, were of unequal 
quality. In order to address that, we reviewed and improved metadata throughout the 
system.  

Having now shown the usefulness of that metadata, we now expect that test contributors 
will pay more attention to it and provide higher quality metadata in the long run. 

Documentation for the Framework  
While MobiWebApp made efforts to ensure that using the framework is as intuitive as 
possible, some parts naturally require documentation. The MobiWebApp project 
therefore provided documentation that describes the manifest format that the framework 
uses so that it can more easily be manipulated outside of the Manifest Generator tool11. 

Another important component is the metadata format as used inside test files themselves. 
This part of the metadata system makes it possible to maintain metadata as close as 
possible to the tests that are being described — which is to say in the tests themselves. 
The MobiWebApp project also wrote and published documentation for that part of the 
format12. 

This documentation covers multiple aspects. First, it covers the format itself, what it 
means, and provides a convenient template for whoever wishes to start writing a test from 
scratch. Second, it provides the pointers to the Test Harness documentation (of which 
more is said below). Finally, it documents the Manifest Generator tool that can take a test 
suite, extract all the metadata contained in its tests, and generate a manifest tailored to the 
needs of the Test Framework so that tests can be more easily imported, with the correct 
information. 

Several users have taken to using the framework since we have documented it, and the 
feedback so far is that they have found it very helpful in getting up and running quickly 
with the system. 

                                                 
11 http://w3c-test.org/framework/docs/maintainer/ 
12 http://w3c-test.org/framework/docs/maintainer/metadata-format.html 
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REST API and Third-Party Integration  
Interactions with the test framework were initially only available through a human-
oriented user interface.  

Over the past year, MobiWebApp also developed a REST API to the same 
functionalities that enables programmatic access (both for reading and writing) to the 
system, essentially enabling it as an Open Data platform. 

This enables third parties to re-use creatively the data collected by the system: anyone in 
the Web community can make use of this information and interact with it without prior 
permission. This makes it possible for such third parties to mine the same information 
and enrich it with new views and new services. 

Many creative uses of this data are now entirely open, from building existing services 
such as Can I Use13 atop real-world, continuously gathered information to novel 
exploitations of this data that we haven’t envisaged yet. The flexibility of the API is there 
precisely so that anyone can put it to work for purposes never imagined by the 
MobiWebApp team. 

Producing specialised views on test results is useful for W3C working groups as well. 
Amongst other things, it makes it possible for them to more easily evaluate how well a 
specification is being implemented by vendors, which sections are proving most 
complicated, and in turn improve their specifications to address such problems. 

It can also be used by developers to produce a technological baseline so that they can 
know when to use some technologies and when they are not yet sufficiently well 
deployed. A company wishing to develop a Web application known to require a specific 
set of features could build a view of the results for these features that would enable them 
to evaluate its support in deployed systems, and to adjust their product to reach a broader 
audience.  

The API caters to many needs by having at its core a simple, REST-friendly set of actions 
that produce well-documented JSON data. It is accessible to any Web applications 
(notably via the usage of CORS and JSON-P).  

In order to ensure that the API was sufficiently functional for advanced uses, the entire 
Test Framework user interface itself, including complete reports and test runner, are built 
on top of  this API.  

MobiWebApp also assisted the first deployment of the framework’s REST API to a third 
party. The W3C Internationalization Working Group is very keen on testing and on 
publishing their test results to their own site, with explanations and details about what 
exactly they are testing. To date they had been carrying out this process manually, a task 
that required a fair amount of tedious work and that had proven error prone over the 
years. 

By using the documentation and some code examples and with continuous oversight and 
assistance from the project they were able to automate this functionality and integrate 

                                                 
13 http://caniuse.com/ 
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data directly from the framework straight into their report pages, notably for Ruby 
Markup14 and HTML Escapes15. 

 
Figure 4: Integration of Test Framework results in the W3C Internationalization 
Working Group pages 
Working closely with the Internationalization Working Group helped MobiWebApp 
identify which parts of the REST API worked, and which parts were problematic. 
Notably, we identified and fixed two primary issues: 

• The documentation was insufficiently clear in a number of places about which 
type of information a client script could expect to receive. This was addressed 
with extensive clarification of the documentation, based on the explanations that 
were given to the Internationalization Working Group. 

• In some cases, the part of the API that provided test results could generate very 
large amounts of data with extremely precise granularity. While there are cases in 
which such granularity can indeed be useful, for many situations (such as the 
Internationalization group’s case) the volume of results to be transferred was 
excessive while at the same time causing the rendering of the results to be slow — 
possibly even unusable over a mobile connection. This was addressed by adding a 
more summarised API method that provides the same data but with far less 
granularity and with a number of statistical aspects pre-calculated. 

Once the changes were deployed and the Internationalization Working Group was able to 
release its live pages using MobiWebApp’s REST API, they indicated that they were 
very happy with the result and plan on using it more. We anticipate to progressively see 
the appearance of an increasing number of such uses — notably, we expect the API to 
increasingly be used for the production of implementation reports, a critical step in 
W3C standardization process. 

We also envision its usage directly inside draft to flag some sections as more or less 
stable based on the test results being gathered. 

 

                                                 
14 http://www.w3.org/International/tests/html-css/ruby/results-interactive 
15 http://www.w3.org/International/tests/html-css/escapes/results-html-escapes 
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4- TESTING ACTIVITY AT W3C 
In the first year, the MobiWebApp project created the formal environment in which the 
work done in the second year evolved. This comprised multiple components. First, 
requirements were gathered from the W3C community at large in order to ensure that the 
different needs of all groups developing different technologies were taken into account. 
Then, these requirements were prioritised in order to produce the development roadmap 
that was deployed in the second year. 

In parallel to that, the collaboration spaces in which this work took place — namely the 
Web Testing Interest Group and the Browser Testing and Tools Working Group were 
chartered and outreach was conducted in order to drive participation in them. Having 
successfully lifted them off the ground, this provided a high quality setting for the 
continuation of this work to take place in. 

Collaboration with Core Mobile Web Platform Communi ty Group  
A Community Group is a specific type of group within W3C that is more open than 
regular groups in order to foster greater involvement from a wider community.  

The Core Mobile Web Platform Community Group (CoreMob CG)16 is one such group 
that aims to accelerate the adoption of the Mobile Web as a compelling platform for the 
development of modern mobile web applications. In order to do so, it has gathered 
together over 250 people from Web development, network operators, large Web 
companies, handset manufacturers and browser vendors. Its focus on interoperability 
through testing makes it a natural partner for this project. 

Facebook, one of the instigator of the group, submitted their RingMark test suite17, a 
visualization of gaps in standards support, to the CoreMob CG. In order to avoid 
fragmentation in the W3C’s testing toolset, we discussed the architecture of the system 
with the CG in order to reach consensus on a way in which the RingMark visual 
component could be used to represent results gathered by the W3C Test Framework so 
that the adherence to standards of various devices and browsers could be easily 
represented, and conversely to have the RingMark test runner submit new result batches 
to the Test Framework. 

While at this point only the architecture for this integration has been sketched out, 
development continues in the CoreMob CG to further this idea. We expect this 
collaboration to continue after the end of the in order to bring this collaboration to full 
fruition. 

Interaction with this CG also made it possible to test drive the functionalities of the 
framework with highly motivated users from the industry and broader community, which 
in turn made it possible to make multiple improvements and extensive documentation of 
the W3C’s system. 

                                                 
16 http://www.w3.org/community/coremob/ 
17 http://rng.io/ 
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Harness Documentation  
One aspect in which our collaboration with CoreMob revealed a weakness was in the 
documentation of the JavaScript test harness. 

The Test Harness18 is a JavaScript library that W3C test suites use in order to run tests in 
a specific, well-controlled manner, and to produce well-defined reports on a given test 
run.  

It is designed to work well with the overall Test Framework, and to support many 
advanced features that put it on par with modern testing systems. Thanks to continuous 
outreach, it is now the standard test system used across W3C groups that produce APIs, 
such as HTML, WebApps, Device API, etc. 

Despite being in common use, it was not well documented beyond comments in the 
source JavaScript. This provided a barrier to new contributors and did not help existing 
one produce tests with as high quality as they ought to have. In fact, only a core set of 
high-quality developers were successful in deploying it properly, while too many 
remained puzzled as to how to use it or created test suites that features bugs due to poor 
understanding of the harness. This issue has now been fixed with a complete tutorial that 
covers the entire functionality of the harness system19. 

The tutorial is divided into two columns — one with the functionality, and the other with 
the code that it corresponds to — in order to be easier to read. Furthermore, all of the 
code displayed in the tutorial is actually run as part of the tutorial, so that the results as 
reported by a real test suite can be observed at the end of the tutorial. This is a pattern that 
is common in tutorials found in the JavaScript community, and was therefore selected as 
a way of maximising outreach to that specific community. 

                                                 
18 https://github.com/jgraham/testharness.js 
19 http://darobin.github.com/test-harness-tutorial/docs/using-testharness.html 
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Figure 5: Screenshot of the Test Harness tutorial with running code 
The community has provided extensive feedback on this tutorial, which has been 
incorporated. The Test Harness project now uses MobiWebApp’s tutorial as its official 
primary documentation. Feedback on this tutorial from the test developers involved in the 
Core Mobile Web Platform Community Group has been very positive, and is helping 
them develop more tests. 

Integrating Existing Test Suites  
MobiWebApp has also been contributing to the development of test suites, notably by 
ensuring that they are integrated into the framework, and in providing the tooling related 
to the task. 

While the test framework was first deployed in late 2011, it now features 3122 test cases 
in 40 test suites for 37 specifications. Put together they have generated 19,923 test results. 

The increase in test suites on a monthly basis can be seen in the framework’s own 
reporting system: 
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Figure 6: Evolution of the number of test cases in W3C Test Framework 
These test suites are naturally generating an increasing volume of test results, which is 
progressively helping to paint a detailed picture of how well Web standards are 
implemented and deployed. 

Result submissions can also be seen to increase on a monthly basis from the framework’s 
reporting: 

 
Figure 7: Evolution of number of test results gathered by the W3C Test Framework 
Initially, integrating test suites into the framework was somewhat tedious. The reason for 
that was that one needed to produce a manifest listing all the tests in a test suite, along 
with metadata describing them, before the test suite could be imported. 
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However, since test documents contain the required metadata in a machine-readable 
form, MobiWebApp wrote a small tool called the Manifest Generator that is able to 
spider an existing test suite, extract the metadata, and generate a manifest that works for 
the test framework. This has proved very helpful in speeding up the integration of test 
suites, and most suites are now imported using this tool. 
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Conclusion 
The availability of a strong and full-featured testing ecosystem continues to show its 
increasing relevance. The production of a generic testing framework and its paraphernalia 
has helped simplify the production of higher quality test material from Working Groups. 
While the test framework will continue to evolve, it has now reaches a level of capability 
and stability that has enabled it to prove itself useful in real-world usage contexts, outside 
of the community that holds testing as its primary focus. 

During its second year, MobiWebApp grew the framework and its surrounding material: 

• By expanding the functionality of the framework. 

• By making the data available and reusable in machine-readable form. 

• By ensuring that the user interface functions properly on constrained devices. 

• By documenting all the important components of the framework and collaborating 
with various groups to ensure that they were able to use our tools. 

• By helping with test development and by integrating existing test suites into the 
system. 

 

 


