-
h 1 IUUIWEdeP
MOBILE WEB APPLICATIONS

T R P awesasererer
SEVENTH FRAMEWORK
PROGRAMME

MobiWebApp

Mobile Web Applications for Future Internet Services

Deliverable D3.2

Test Suites Report Year 2

Version: 18th September Final

D3.2 — Test Suites Report Page 1 of 20

PROJECT PERIODIC REPORT

Name, title and organisation of the scientific repr esentative of the project's coordinator
Dr Philipp Hoschka Tel: +33-4-92385077 Fax: +33-4-9 2385011 E-mail: ph@w3.0rg
Project website ? address: http://mobiwebapp.eu/

Project
Grant Agreement number 257800
Project acronym: MobiWebApp
Project title: Mobile Web Applications
for Future Internet Services
Funding Scheme: Coordination & Support Action

Date of latest version of Annex | against which thiglarch 17, 2010
assessment will be made:

Document

Period covered: 1 September 2011 to 31 August 2012
Deliverable number: D3.2

Deliverable title Test Suites Report Year 2
Contractual Date of Delivery: Project month M24

Actual Date of Delivery: September 2012

Editor (s): Robin Berjon

Author (s): Robin Berjon

Reviewer (s): Dominique Hazael-Massieux
Participant(s): ERCIM/W3C

Work package no.: 3

Work package title: Interoperability

Work package leader: Robin Berjon

Distribution: PU

Version/Revision: 11

Draft/Final: Final

Total number of pages (including cover): 20

! Usually the contact person of the coordinatorpesiied in Art. 8.1. of the grant agreement

% The home page of the website should contain therieEuropean flag and the FP7 logo which arelaiviai in
electronic format at the Europa website (logo ef Buropean flag:
http://europa.eu/abc/symbols/emblem/index_en;mgo of the 7th

FP:http://ec.europa.eu/research/fp7/index_en.cfim?mmpsoThe area of activity of the project should also
be mentioned.

D3.2 — Test Suites Report Page 2 of 20

MobiWebApp - 257800

DISCLAIMER

This document contains description of the MobiWebApp project work and findings.

The authors of this document have taken any available measure in order for its content to be
accurate, consistent and lawful. However, neither the project consortium as a whole nor the
individual partners that implicitly or explicitly participated in the creation and publication of this
document hold any responsibility for actions that might occur as a result of using its content.

This publication has been produced with the assistance of the European Union. The content of
this publication is the sole responsibility of the MobiWebApp consortium and can in no way be
taken to reflect the views of the European Union.

The European Union is established in accordance with
the Treaty on European Union (Maastricht). There are
currently 27 Member States of the Union. It is based
on the European Communities and the member states
cooperation in the fields of Common Foreign and
Security Policy and Justice and Home Affairs. The five
main institutions of the European Union are the
European Parliament, the Council of Ministers, the
European Commission, the Court of Justice and the

Court of Auditors. (http://europa.eu.int/)

MobiWebApp is a project funded in part by the Europ ean Union.

D3.2 - Test Suites Report Page 3 of 20

MobiWebApp - 257800

TABLE OF CONTENTS

Disclaimer 3
Table of Contents 4
1- Summary 5
2- Introduction 6
3- Testing Framework 8
4- Testing Activity At W3C 15

D3.2 - Test Suites Report Page 4 of 20

MobiWebApp - 257800

1- SUMMARY

This report provides an overview of the achievemenit the Interoperability Work
Package during the second year of MobiWebApp.

MobiWebApp built atop the work carried out in thisf year to continue establishing the
constitutive element of a generic testing activitggythin W3C, targeting mobile
interoperability as a primary goal. This activityceempasses groups working specifically
on testing technology and is coordinated with tteynW3C groups that develop tests as
part of their own deliverables.

Over this period, MobiWebApp has developed and aeg a complete testing

framework using state-of-the-art mobile-friendly WVéechnology that enables the
management of test suites across the entire W3@nms@ion in coordination with the

broader community and industry, and has contribtdetie development of test suites as
well as to their integration into the framework dbhgh continuous education and
outreach. This report delves into both aspects.

D3.2 - Test Suites Report Page 5 of 20

MobiWebApp - 257800

2- INTRODUCTION

Web technologies are increasingly being used toeldev full-fledged applications,

notably on mobile devices where they are commoelggived as the upcoming primary
application development technology. The scope antkty of these technologies keep
expanding, adding new features to HTML, to CSS, arobst of new APIs specifically
tailored to the creation of applications.

Such an expansion, spread across a broad comnsmaityning multiple working groups,
and being deployed by a multiplicity of browser @iers, device manufacturers, and Web
application developers naturally creates a numbéanteroperability issues. While W3C
working groups are required to produce test mdtadggpart of their deliverables, these
efforts have long happened primarily independefrdiyn one another, without reuse of
testing components, with insufficient common infrasture, and often with varying
degrees of quality. Results obtained from theserdes testing efforts were difficult to
find and to combine together in order to gain vigipon the broader interoperability of
the platform and therefore on the overall usabdityhe technologies that compose it.

The W3C thus made the decision to launch a getesimg activity that would be able to
produce common infrastructure for the completanigstcosystem involved in standards
development and the usage of standards technologi#geb developers.

MobiWebApp’s Interoperability Work Package fundsriwdo create a common test
framework within W3C along with its documentatiand work on integrating the test
suites that working groups produce into this shamédstructure.

The Testing Activity at W3C includes the Web Tegtimterest Group which is in
charge of developing and deploying testing infiagtire and their paraphernalia. It is in
collaboration with this group that the work desedthere has been carried out.

3 http://www.w3.org/testing/ig/

D3.2 - Test Suites Report Page 6 of 20

MobiWebApp - 257800

8 http://www.w3.org/wiki/Testing/Requirements

D3.2 - Test Suites Report Page 7 of 20

MobiWebApp - 257800

3- TESTING FRAMEWORK

During the first year of this project, the MobiWety#\ project contributed to the creation
in W3C of the basic building blocks of a testingnfrework. This included deploying a
specific test server and putting together the ahitiersion of the testing framework,
which is the core component in this project and twine MobiWebApp team kept
building atop of. In order to develop this, an ialitset of over 70 requiremefitaias

gathered.

Of those requirements, all save one have now begiemented in the online Test
Framework®. (The one missing requirement is currently undentiny and is likely to be
dropped due to actual lack of interest for it.)

W3C Test Framework # Test Suites W Specifications W Reports

test case name Gecko
et-childElement-null.html 1/141
et-childElement-null.svg 1141
et-childElement-null xhtm| 1/1/.
st-childElementCount-nochild.htmi 2
et-childElementCount-nochild.svg 20
et-childElementCount-nochild.xhtm! 2
et-childElementCount.html 2F-
et-childElementCount.svg 2k
et-childElementCount xhtmi 2500,
st-dynamic-add.htmi 2 A
et-dynamic-add.svg 2/
at-dynamic-add.xhtml 2y
et-dynamic-remaove.html 1/.41
et-dynamic-remove.svg 2k
et-dynamic-remove.xhtm| 2L
et-entity.svg /.1
at-entity.xhtml 2151
et-firstElementChild.html 1/./1
et-firstElementChild.svg 20k
et-firstElementChild.xntml e e
et-lastElementChild.html 1/7.1
et-lastElementChild.svg 3/.1.
at-lastElementChild.xhtml 2401
et-namespace.html 1/./41

Presto WebKit

AR = AT |
e R
) Wy
W
R P
Drrd L A0
WIVE
..
s I
o
B B
St 727
AR = A A |
el R
HLT, o
17.¢.
e R
Ak ol
T e
Tt N A
St LA
S e
Aol LETels
ddd ol

Figure 1: W3C Test Framework listing test results

10 http://w3c-test.org/framework/app/

D3.2 - Test Suites Report

Page 8 of 20

MobiWebApp - 257800

W3C Test Framework # Test Suites

Actions Name URL
odit: || sstticns HTMLS5 Whatever hitp/Awww. w3 .org/ TR/tmi5S/Overview. himl
adit. || ‘wactions Vibrator API hittp://www.w3.org/TR/vibration/
bt || conctiona Drawing Dahut High Circles http://www.w3.org/TR/battery-status/
adit: | | zaitions The Real Vibration API hittp://www.w3.org/TR/vibration/
adit: || -swctions Element Traversal hitpy//www.w3.org/TR/ElementTraversal/Overview,html

adit. || anitions DeviceOrientation Event Specification http/fwwne.w3.org/TR/orientation-event/

Use the W3C Test Framework Bugzilla for comments, questions, and error reports about this system,
The sources for this system are available online. Patches welcome!

This project was developed by Dominique Hazael-Massieux <dom@w3.org>, David M. Berfanger <david.berfanger@hp.com>, Peter Linss
<peterlinss@hp.com=, and Robin Berjon <robin@berjon.coms.

".H webapp

I
This proiect is funded bv the Eurcoean Union throuah the Seventh Framework Proaramme (FF7/2010-2012) under arant aoreement n°257800 - Mobile

Figure 2: Specifications tested in the W3C Test Framework

The Test Framework is now fully operational, anthigeasingly being used by the Web
testing communities. The initial stab at this fravoek which was carried out during the
first year constituted a good starting point, bateamore traditional server-side Web
application, it suffered from a number of limitat® that did not put it on par with

expectations for Web applications developed todyer the past year, MobiWebApp

therefore largely re-architected it in order tolt@a more flexible, more powerful system
that is both more open to future development asteeso manipulate for its end-users.

A number of new features have been added. Of péaticote, data from WURFL has
been integrated into the framework so as to impit/@bility to produce more useful
analysis as part of its reporting features. WUR§& la idatabase that makes it possible to
identify browsers and devices based on the hedlleysset in the HTTP protocol.

Prior to WURFL integration, reports could be getedafor specific browsers or
rendering engines, but such information did notvigte the ability to differentiate for
instance mobile platforms from desktop ones (esfigcsince in most cases the same
browsers or rendering engines are now availablebaoth). With the integration of
WURLF, it is now possible to query test resultshga¢d by the system to know if they
were on a mobile device, a tablet, or a TV foranse. This enablewore powerful data
mining by making it possible to categorise test resuttake the specifics of multi-
deviceworld into account.

This contributes to another new feature: the prodnf report-generating tools as part
of the Framework. It is difficult to anticipate wih@different users may want as part of a
report generated by the Framework and therefongraduce all the potentially useful
reports.

D3.2 - Test Suites Report Page 9 of 20

MobiWebApp - 257800

As detailed below, the Framework now exposes a RERITthat is very useful to ensure
that third-party developers can both reuse our @a¢a and contribute to it. But it is not
realistic to expect everyone who might need sudh ttabe able to write a program to
process it and generate a report tailored to Spewkds.

In order to address this, the framework now offersReports” section. One of these
reports is in fact aeport-making tool. The user is invited to choose which target
platforms she wants a report for (e.g. a specifosvser, or browsers on a specific device
class such as “all TVs”) and the specifications idrich results are desired. Once the
report type is specified, the system generatestexntd support based on test results that
fills out the report.

Additionally, the framework can now produce a repmr itself, such as how many test
suites, test cases, results, and so forth areadlail Since the data is continuously
available, no human intervention is required ineoritd keep such reports up to date.

Mobile Friendly Framework

One of the objectives for this second year wasuitilla mobile-friendly test runner and
improve overall navigation in the Test Frameworls, well as improve the Test
Framework’s user interface overall to make it nftuel to use.

It was already possible to use the Test Framewoek \Application on mobile devices,
but the experience was at best suboptimal. Thiswbasbeen strongly improved.

First, the code has been reorganised in order tontwe easily optimised, which has
enabled us to trim down the weight of resources #ra being transmitted over the
network — an important consideration for mobileides.

Overall the client-side code has been written te tioday’'s Web development best
practices into account, which translates to a kighhintainable Web application that
adapts well to new constraints and requirements.

Second, the way in which the interface is presehtasdbeen completely overhauled to be
responsive to device size. Notably, when on a smakreen the navigation switches
from horizontal to vertical, the tables that makepbssible to select a suite or
specification to test fold down into simpler boxesd the test running user interface
reorganises itself to be more usable within thetttl space (see Figure 3).

Only the results tables remain large on a smabestras there does not seem to be a
better way of presenting a large data set of resafid that most users interested in these
data would in any case be more likely to use a wateen to browse through it

Thanks to this the Test Framework is nparfectly usable on a mobile device, which is
a key aspect in obtaining test results for smakae devices.

Beyond the mobile improvements, the new user iaterhas also been largely improved
in many places. It is now more fluid and easienawigate where the first version often
confounded users. It also provides more detailsitathe underlying data that the system
gathers.

Switching between pages is now much faster as th@yequisite data is loaded, while
ease of navigation is maintained. This was achiebsd reusing modern Web
development techniques and libraries. The feedlfiack end-users received after these
changes has been overwhelmingly positive.

D3.2 - Test Suites Report Page 10 of 20

MobiWebApp - 257800

Finally, the initial iteration on the Test Framewarnly made it possible to run tests
inside of an <object> element, which worked well étesktop browsers but caused a
variety of issues with mobile ones. This has beesinged so that embedded tests can
now run either using the <object> element or th&amie> element. This small
preference can make a large difference in the bebawf embedding on some
implementations, and therefore helps with thenashing experience. The preference has
been made sticky for a given user agent on a giexice, and can therefore persist
across multiple test runs and test suites whichemdke experience of usamsnning
tests much mor e fluid.

W3C Test Framework

Test Suites

W Specifications

N Reports

Framework Stats

Matrix Maker

Browser Overview

Login

Battery Status API

[1/6]
No specification link

battery-charging.html j
Mo flags
Pass Cannot Tell | Skip
@ nhtml
| use iframe
= = 8 |
Description il

The battery is charging.

Preconditions

w3c-test.org/framework/app/ jed in to the -
Figure 3: Screenshot of thetest runner on a smaller screen

D3.2 - Test Suites Report Page 11 of 20

MobiWebApp - 257800

Automated Test Results Collection

By default, the test runner present tests to theten simple alphabetical order — which
is fine, but not always the most helpful.

In order to address this, the MobiWebApp projeateatito the system a way of running
tests in “most-needed” order. Using this, the fravorx will find out whichtests need
more runs for the specific user-agent that the current iseunning and place those at
the beginning of the list.

MobiWebApp has also worked on additwgo other smarter test running modes. The
first is the ability to run tests in a random ordedeed, in some cases running a test may
cause the user agent to enter a state that hde-afééct on another, subsequent test. Due
to this, always running tests in the same orderhada problems that should ideally be
surfaced. Adding a random order addresses this.issu

The other smarter ordering is the ability to ramomated tests first. This makes it
Ivention, and therefore gather more informationdas

While developing this functionality it appeared ttlsmme of the metadata, notably the
parts that can help ascertain that a test canmram iautomated fashion, were of unequal
quality. In order to address that, weviewed and improved metadata throughout the
system.

Having now shown the usefulness of that metadatanow expect that test contributors
will pay more attention to it and provide higheiatity metadata in the long run.

Documentation for the Framework

While MobiWebApp made efforts to ensure that uding framework is as intuitive as
possible, some parts naturally require documemtatibhe MobiWebApp project
therefore provided documentation that describesrtheifest format that the framework
uses so that it can more easily be manipulateddsuts the Manifest Generator tobl

Another important component is the metadata forsaised inside test files themselves.
This part of the metadata system makes it posslmaintain metadata as close as
possible to the tests that are being described -4ehnib to say in the tests themselves.
The I\/lll(zjbiWebApp project also wrote and publishedueentation for that part of the
format™.

This documentation covers multiple aspects. Fitstovers the format itself, what it
means, and provides a convenient template for wdrogishes to start writing a test from
scratch. Second, it provides the pointers to thet Harness documentation (of which
more is said below). Finally, it documents the Mesiti Generator tool that can take a test
suite, extract all the metadata contained in gtsteand generate a manifest tailored to the
needs of the Test Framework so that tests can be easily imported, with the correct
information.

Several users have taken to using the framewodesive have documented it, and the
feedback so far is that they have found it veryfutlin getting up and running quickly
with the system.

1 http://w3c-test.org/framework/docs/maintainer/
12 http://w3c-test.org/framework/docs/maintainer/ndeta-format.html

D3.2 - Test Suites Report Page 12 of 20

MobiWebApp - 257800

REST API and Third-Party Integration

Interactions with the test framework were initialbyply available through a human-
oriented user interface.

Over the past year, MobiWebApp also developedRBST API to the same
functionalities that enables programmatic accessh(lior reading and writing) to the
system, essentially enabling it as an Open Datfopta.

This enables third parties to re-use creativelydéia collected by the system: anyone in
the Web community can make use of this informatiad interact with it without prior
permission. This makes it possible for such thiagtips to mine the same information
and enrich it with new views and new services.

Many creative uses of this data are now entirelgngogrom building existing services
such as Can | US? atop real-world, continuously gathered informatitn novel
exploitations of this data that we haven’t envishget. The flexibility of the APl is there
precisely so that anyone can put it to work for pmses never imagined by the
MobiWebApp team.

Producing specialised views on test results isuhdef W3C working groups as well.

Amongst other things, it makes it possible for theenmore easily evaluate how well a
specification is being implemented by vendors, Whiections are proving most
complicated, and in turn improve their specificaido address such problems.

It can also be used by developers to produce axvdogical baseline so that they can
know when to use some technologies and when theynat yet sufficiently well
deployed. A company wishing to develop a Web apgiben known to require a specific
set of features could build a view of the resuttsthese features that would enable them
to evaluate its support in deployed systems, aratljost their product to reach a broader
audience.

The API caters to many needs by having at its aminple, REST-friendly set of actions
that produce well-documented JSON data. It is a&tokesto any Web applications
(notably via the usage of CORS and JSON-P).

In order to ensure that the APl was sufficientipdtional for advanced uses, the entire
Test Framework user interface itself, including pbete reports and test runner, are built
on top of this API.

MobiWebApp also assisted the first deployment effitamework’s REST API to a third
party. The W3C Internationalization Working Group very keen on testing and on
publishing their test results to their own sitethmexplanations and details about what
exactly they are testing. To date they had beenyiogrout this process manually, a task
that required a fair amount of tedious work and thad proven error prone over the
years.

By using the documentation and some code exampksvah continuous oversight and
assistance from the project they were able to aat®rthis functionality and integrate

13 http://caniuse.com/

D3.2 - Test Suites Report Page 13 of 20

MobiWebApp - 257800

data directly from the framework straight into theeport pages, notably for Ruby
Markup** and HTML Escapés.

Simple ruby

Gecko Presto Trident WebKit

basic rendering, with b [Exploratory ts

3 S A1l 2k 4/.1. ruby-001a

basic rendering, no tb When simple ruby markup is used without the rb tag, [
base text at

R, v)2 30.1. ruby-002

appear wit single uby [
it the rbtag, the ruby text zppears ey o -
printe base text at pproximately haif [REMRIEN hti e il e ruby-003

rp, with b [Explorat 20 T el

tp, no b Ruby parentheses in the source are hidden if the 2/ —
browser supports ruby. wolls i

Links: Section 4.6.20 - Latest results for section 4.6.20 » Submit data for section 4.6.20 + Related tests:

2011-11-12: Only Internet Explorer, Safari and Chrome all handle simple ruby. They handle it equally well
whether there is an rb tag or not. They also handle multiple base+annotations in a single ruby element.

Figure 4: Integration of Test Framework results in the W3C Internationalization
Working Group pages

Working closely with the Internationalization Wankj Group helped MobiWebApp
identify which parts of the REST API worked, and igth parts were problematic.
Notably, we identified and fixed two primary issues

The documentation was insufficiently clear in a be@mof places about which
type of information a client script could expectrereive. This was addressed
with extensive clarification of the documentatiddased on the explanations that
were given to the Internationalization Working Gpou

In some cases, the part of the API that providst results could generate very
large amounts of data with extremely precise gyl While there are cases in
which such granularity can indeed be useful, fomynaituations (such as the
Internationalization group’s case) the volume dfults to be transferred was
excessive while at the same time causing the rerglef the results to be slow —
possibly even unusable over a mobile connectiors Whs addressed by adding a
more summarised APl method that provides the saata dut with far less
granularity and with a number of statistical aspgxe-calculated.

Once the changes were deployed and the Internénatien Working Group was able to
release its live pages using MobiWebApp's REST ARg&y indicated that they were
very happy with the result and plan on using it eade anticipate to progressively see
the appearance of an increasing number of such-usastably, we expect the API to
increasingly be used for thgroduction of implementation reports, a critical step in
W3C standardization process.

We also envision its usage directly inside draftfléam some sections as more or less
stable based on the test results being gathered.

4 http://www.w3.org/International/tests/html-csshiresults-interactive
15 http://www.w3.org/International/tests/html-css/gses/results-html-escapes

D3.2 - Test Suites Report Page 14 of 20

MobiWebApp - 257800

4- TESTING ACTIVITY AT W3C

In the first year, the MobiWebApp project creatbd formal environment in which the
work done in the second year evolved. This comgrisailtiple components. First,
requirements were gathered from the W3C communiltgrge in order to ensure that the
different needs of all groups developing differeethnologies were taken into account.
Then, these requirements were prioritised in otdgsroduce the development roadmap
that was deployed in the second year.

In parallel to that, the collaboration spaces incltthis work took place — namely the
Web Testing Interest Group and the Browser Testind Tools Working Group were
chartered and outreach was conducted in orderitv@ gharticipation in them. Having
successfully lifted them off the ground, this pdmd a high quality setting for the
continuation of this work to take place in.

Collaboration with Core Mobile Web Platform Communi ty Group

A Community Group is a specific type of group witiWw3C that is more open than
regular groups in order to foster greater involvetdeom a wider community.

The Core Mobile Web Platform Community Group (ComMCG})® is one such group
that aims to accelerate the adoption of the MoWlkb as a compelling platform for the
development of modern mobile web applications. fdeo to do so, it has gathered
together over 250 people from Web development, oedwoperators, large Web
companies, handset manufacturers and browser \@ntsrfocus on interoperability
through testing makes it a natural partner for pinggect.

Facebook, one of the instigator of the group, stfeahitheir RingMark test suite a
visualization of gaps in standards support, to @@eMob CG. In order to avoid
fragmentation in the W3C'’s testing toolset, we d&sed the architecture of the system
with the CG in order to reach consensus on a wawthich the RingMark visual
component could be used to represent results gath®r the W3C Test Framework so
that the adherence to standards of various devares browsers could be easily
represented, and conversely to have the RingMaitkrtgner submit new result batches
to the Test Framework.

While at this point only the architecture for thigegration has been sketched out,
development continues in the CoreMob CG to furthi@s idea. We expect this
collaboration to continue after the end of the fdeo to bring this collaboration to full
fruition.

Interaction with this CG also made it possible ¢sttdrive the functionalities of the

framework with highly motivated users from the istty and broader community, which

in turn made it possible to make multiple improvetseand extensive documentation of
the W3C'’s system.

18 http://www.w3.org/community/coremob/
7 http://mg.iof

D3.2 - Test Suites Report Page 15 of 20

MobiWebApp - 257800

Harness Documentation

One aspect in which our collaboration with CoreMebealed a weakness was in the
documentation of the JavaScript test harness.

The Test Harne$¥is a JavaScript library that W3C test suites userder to run tests in
a specific, well-controlled manner, and to prodwedl-defined reports on a given test
run.

It is designed to work well with the overall Testafework, and to support many
advanced features that put it on par with modestirg systems. Thanks to continuous
outreach, it is now the standard test system usexbs W3C groups that produce APIs,
such as HTML, WebApps, Device API, etc.

Despite being in common use, it was not well doauexd beyond comments in the
source JavaScript. This provided a barrier to newmtrdoutors and did not help existing
one produce tests with as high quality as they btmlhave. In fact, only a core set of
high-quality developers were successful in deplgyih properly, while too many
remained puzzled as to how to use it or creatddstetes that features bugs due to poor
understanding of the harness. This issue has newfibead with acomplete tutorial that
covers the entire functionality of the harnesseayst

The tutorial is divided into two columns — one witte functionality, and the other with
the code that it corresponds to — in order to kmeedo read. Furthermore, all of the
code displayed in the tutorial is actually run ast pf the tutorial, so that the results as
reported by a real test suite can be observeceatritl of the tutorial. This is a pattern that
is common in tutorials found in the JavaScript camity, and was therefore selected as
a way of maximising outreach to that specific comityu

18 https://github.com/jgraham/testharness.js
19 http://darobin.github.com/test-harness-tutoriat&lasing-testharness.html

D3.2 - Test Suites Report Page 16 of 20

MobiWebApp - 257800

assert_true(actual, description) checks that actual isstrictly test(function () {
equal to true, which is to say that it has to be the JavaScript true assert_true{true, "Truth is true");
assert_true(l === 1, "One is really one");

value and not just someting that evaluates as "truthy” such as 1 or
}, "Simple checks on truth");

"dahut" .
assert_false{actual, description) isthe same as assert_true test (function () {
but in reverse. It has the same striciness about its actual being assert_false(false, "Falsity is false");

assert_false(l === @, "One is not zero");

JavaScript's false and not just "falsy" {e.g. 0, null)
}, "Simple checks on falsity");

assert_equals{actual, expected, description) checks that test(function () {
actual and expected have the same value (without necessarily assert_equals({"dahut", "da" + "hut", "String concatenation");
assert_equals{42, 6 x 7, "The ultimate answer");

being the same object). Note that this comparison is strict and that
}, "simple checks on equality");

you should not rely on whatever automatic type conversions that
JavaScript may perform on comparisons,

assert_not_equals(actual, expected, description) is the reverse test (function () {
of assert_equals and checks that its /actual/ and /expected/ are assert_not_equals(“dahut", “myth", “String comparison");
assert_not_equals(42, "42", "The ultimate answer");

not the same, The same caveat on comparison strictness applies, so : N .
}, "Simple checks on unequality");

that values that may seem very similar are still not equal.

assert_in_array(actual, expected, description) checks that test(function () {
actual is in the array provided in expected . Any odd member will assert_in_array("dahut",
"chupacabra dahut unicorn".split(" "),
"Dahut hunting");
assert_in_array(2017, [42, 47, 62, 2017] , "Lottery");
}, "Simple checks on membership");

do, but note that it will not recurse into the array if it is

multidimensional.

Figure5: Screenshot of the Test Harnesstutorial with running code

The community has provided extensive feedback as thtorial, which has been
incorporated. The Test Harness project now usesi\MelbApp’s tutorial as its official
primary documentation. Feedback on this tutoriaifithe test developers involved in the
Core Mobile Web Platform Community Group has beeny\positive, and is helping
them develop more tests.

Integrating Existing Test Suites

MobiWebApp has also been contributing to the dgwalent of test suites, notably by
ensuring that they are integrated into the fram&wand in providing the tooling related
to the task.

While the test framework was first deployed in 12641, it now feature8122 test cases
in 40 test suites foB7 specifications. Put together they have generd®9P3 test results.

The increase in test suites on a monthly basisbsargseen in the framework’s own
reporting system:

D3.2 - Test Suites Report Page 17 of 20

MobiWebApp - 257800

Test Suite Additions

Increase in test suites per month.

40
27
24
22
17 18
15
10
5 E .
2011-10 2011-11 2011-12 2012-02 2012-03 2012-04 2012-05 2012-06 2012-07 2012-08

Figure 6: Evolution of the number of test casesin W3C Test Framework

These test suites are naturally generating anasorg volume of test results, which is
progressively helping to paint a detailed pictufe how well Web standards are
implemented and deployed.

Result submissions can also be seen to increagemamthly basis from the framework’s
reporting:

Results Submissions
Increase in gathered results per month.

19,923

16,483 16,621
14,837 15,572 9
13,202
11,630
7,430 7,823
4,521] I I

2D11 0 2011-11 2011-12 2012-01 20M12-02 20M12-03 2012-04 2012-05 2012-06 2012-07 2012-08

Figure 7: Evolution of number of test results gathered by the W3C Test Framework
Initially, integrating test suites into the framakavas somewhat tedious. The reason for
that was that one needed to produce a manifestdistl the tests in a test suite, along
with metadata describing them, before the tesésaatild be imported.

D3.2 - Test Suites Report Page 18 of 20

MobiWebApp - 257800

However, since test documents contain the requmnetidata in a machine-readable
form, MobiWebApp wrote a small tool called the Mast Generator that is able to

spider an existing test suite, extract the metadatd generate a manifest that works for
the test framework. This has proved very helpfukpeeding up the integration of test
suites, and most suites are now imported usingdlois

D3.2 - Test Suites Report Page 19 of 20

Conclusion

The availability of a strong and full-featured tegtecosystem continues to show its
increasing relevance. The production of a genestirig framework and its paraphernalia
has helped simplify the production of higher qyafést material from Working Groups.
While the test framework will continue to evolvehas now reaches a level of capability
and stability that has enabled it to prove itseéful in real-world usage contexts, outside
of the community that holds testing as its primf@gus.

During its second year, MobiWebApp grew the framewand its surrounding material:
* By expanding the functionality of the framework.
* By making the data available and reusable in masheadable form.
* By ensuring that the user interface functions prigpeEn constrained devices.

* By documenting all the important components offtaenework and collaborating
with various groups to ensure that they were ablese our tools.

* By helping with test development and by integrataxisting test suites into the
system.

D5.2 - Annual Report (M14) Page 20 of 20

